Psychology 202b–Advanced Psychological Statistics II

  • Syllabus
  • Lecture Notes (updated 1/16/2018)
    • Note that this file may change as the semester proceeds so print at your own risk!!
  • Assignments:
    • Assignment 1 — Due: 1/30/18
      • R demonstration with matrices
    • Assignment 2 — Due: 2/22/18
      • mmpi data
      • other data sources
    • Assignment 3 — Due: 3/8/18 (turn it in by 3/6/18 to get comments back before exam)
      • LogisticData.txt
    • Assignment 4 — Due: 4/17/18
      • Cynicism data
      • Hypomanic Activation data
      • Rathus Assertiveness data
    • Assignment 5 — Due: 4/24/18
      • subsections of output
    • Assignment 6 — Due: 5/10/18
      • hsb1 and also in .txt file format
      • hsb2 and also in .txt file format
      • This might be helpful as an instruction set
      • First file we did in class
      • Second file
      • Third file
  • Additional R Files:
    • Logistic Regression
  • Data Files:
    • MMPI
    • Rlab
    • Cynicism
    • Hypomanic Activation
    • Rathus Assertiveness
  • Mplus Files:
    • Example for reading in input, etc:
      • Mplus Example – input
      • Mplus Example – output
      • Mplus Example – datafile (path.txt)
    • Output from class:
      • Linear Regression
      • Logistic Regression
      • Multinomial Logistic Regression
      • Path Analysis
      • Exploratory Factor Analysis
      • Confirmatory Factor Analysis
      • Structural Equation Modeling
      • HLM:
        • Example from Kreft and de Leeuw, Pg 65: Data
        • Example from Kreft and de Leeuw, Pg 65: Input
        • Example from Kreft and de Leeuw, Pg 65: Output
      • Growth Curve Modeling without predictors
      • Growth Curve Modeling with predictors under Maximum Likelihood
      • Growth Curve Modeling with predictors under WLSMV
  • HLM Program Files:
    • How to use the HLM program (instructions for getting started)
    • Data Files:
      • Level-1: HSB data
      • Level-2: HSB data
    • Output Files:
      • Model 1: Empty model
      • Model 2: Level-1 predictor
      • Model 3: Level-2 predictor
  • Additional Resources